Content

- How do Thermodurics affect the quality and safety of milk and dairy products?
Incidence of spore formers in cheeses

- Aerobic and anaerobic spore formers have been associated with cheese.
- Clostridium species commonly involved in late blowing of cheese included:
 - C. sporogenes
 - C. tyrobutyricum
 - C. butyricum
- Aerobic bacilli have also been reported to be associated with blowing defects in cheese:
 - B. polymyxa in Cremoso and Mozzarella cheeses
 - B. marcerans in mozzarella and Taluhet cheeses

(Klijn et al., 1995; Bintsis and Papademas 2002; Quiberoni et al., 2008; Carmen Martínez-Cuesta et al., 2010)
What are some common cheese and whey spoilages?

- Spoilage of Cheddar cheese during storage
 - Flavor defects, bitterness, unclean flavors characteristic of atypical breakdown of proteins

- Production of biogenic amines in low fat and low salt cheese
 - Catabolism of amino acids involving deamination, decarboxylation, desulphuration, oxidation, and reduction

- Loss of functionality of whey proteins isolated and concentrated by ultrafiltration
 - Gel strength and foaming stability
Cheese defects and their relation to Thermodurics

<table>
<thead>
<tr>
<th>Defect</th>
<th>Organisms responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late blowing of Cheddar</td>
<td>High numbers of citrate fermenting Lactobacillus casei, Clostridium tyrobutyricum from poor silage</td>
</tr>
<tr>
<td>Phenolic flavor Cheddar cheese</td>
<td>High numbers of citrate fermenting Lactobacillus casei subsp. rhamnosus</td>
</tr>
<tr>
<td>Grey spots in low-salt Cheddar</td>
<td>Clostridium butyricum from dirty process equipment</td>
</tr>
<tr>
<td>Cheese flavor</td>
<td>Thermoduric lactic acid bacteria (strains of Streptococcus salivarius, and Lactococcus lactis)</td>
</tr>
<tr>
<td>Biogenic amines in low-salt and low-fat Cheddar style cheese</td>
<td>Fecal streptococci (Enterococcus spp.), strains of Lactobacillus</td>
</tr>
<tr>
<td>Open texture defect in Cheddar style cheese</td>
<td>Clostridium spp.</td>
</tr>
</tbody>
</table>
Incidence of spore formers in milk powders

- The common bacilli constituting 92% of total bacterial population in milk powders include the following
 - *Geobacillus stearothermophilus*
 - *Bacillus licheniformis*
 - *Anoxybacillus flavithermus*

(Ruckert et al., 1992)
Milk powder related issues

- Bacteria present in raw milk are concentrated an estimated 10 times as milk powders are processed.
 - Spore counts of generally less than 50 cfu/mL in raw milk would thus become approximately 500 cfu/g even if no significant growth occurred during powder processing.
- It is thus important to start with high quality raw milk.

(McGuiggan et al., 2002; Rückert et al., 2004, 2006; Kim et al., 2009)
Cross contamination and build-up during powder manufacture

- Cross contamination does occur during manufacture of milk powders
- Favorable growth conditions within segments of the processing line support thermophilic growth during longer manufacturing cycles and formation of resistant biofilms
- Thermal operating conditions (between 45 to 75°C/113 to 167°F) may result in a build up of about 5 logs of thermophiles during processing
 - Bypassing the pre-heater reduced the growth of bacteria in the evaporation stage and ultimately reduced the numbers in milk powder
 - Limiting the production cycle to 12 hours substantially reduced thermophilic counts in the milk powder

(Murphy et al., 1999; Scott et al., 2007)
Aerobic sporeformers such as *Bacillus cereus* have been associated with finished milk products.

Although, not common, but have the potential to multiply to large numbers during milk processing and release enterotoxins causing food safety concerns.
Credits

- Conceptualization, content, and analysis: Sanjeev Anand, Ph.D., Associate Professor, Dairy Science Department, South Dakota State University, SD 57007.
 Email: Sanjeev.anand@sdstate.edu. Phone: (605) 688-6648.
- Contributions from my M.S. students form some parts of the overall content of the Modules (I-VI): Mallika Avadhanula, Diwakar Singh, Som Nath Khanal, Sowmya Marka, and Kim Buehner, Dairy Science Department, South Dakota State University, SD 57007.
- Copyright © 2014. Sanjeev Anand. Dairy Science Department, South Dakota State University, SD. 57007.
- Project supported by: Midwest Dairy Foods Research Center (MDFRC).